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1 Introduction

The Lightning network[1] is a design for a decentralized, scalable network that
allows for fast, cheap Bitcoin transactions without requiring trusted third par-
ties. However, it requires the presence of new functionality in Bitcoin: without
this new functionality, the Lightning network can not exist. So, in order to make
the Lightning network a reality, the Bitcoin community must be convinced to
accept this new functionality. While none of this new functionality is known to
have any controversial characteristics, some of it has, so far, no use case outside
the Lightning network 1.

Since any new functionality makes Bitcoin more complex, and more complex
systems have more places where vulnerabilities can exist, the Bitcoin community
might be reluctant to accept new functionality, unless convincing evidence is
provided about the value of the new functionality. However, so far, the Lightning
network only exists on paper, and has not been demonstrated to be useful in
real-life conditions. This creates a catch-22 situation: in order to convince the
Bitcoin community, we would like to make a working implementation of the
Lightning network, but in order to do that, we need to convince the Bitcoin
community to include the required functionality.

There are a couple of ways to escape this catch-22 situation:

1. The Bitcoin community might accept the required functionality, even with-
out a working Lightning network.

2. It is possible to demonstrate the Lightning network on an alt-coin (possibly
one speci�cally designed for this purpose), or on a side-chain, once side-
chains are realized.

3. It might be possible to emulate the missing functionality, with some loss of
desirable properties, using only the already existing functionality of Bit-
coin. This would allow Bitcoin users to become familiar with Lightning-
like technology, while simultaneously increasing the pressure to ��x� the
loss of desirable properties by including the missing functionality in Bit-
coin.

1More speci�cally, I am thinking of the new SIGHASH types.
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This paper describes a design that follows the third approach. The �no trusted
third parties� requirement is relaxed, by introducing a partially trusted escrow
party, which can be audited by arbitrary third parties. The design is such that,
after the missing functionality is introduced to Bitcoin, the migration to a full-
featured Lightning network can happen gradually: pairs of neighboring nodes
are free to choose when they upgrade their link to a real Lightning link, and
during the migration period, transactions can be routed through both old-style
and new-style channels (in any order).

2 Bi-directional microtransaction channels

As a starting point, Alex Akselrod's bi-directional microtransaction channel[2]
is used. Assuming Alice (A) and Bob (B) share a channel, and initial funds for
the channel are provided by Alice:

• A deposit transaction (D) sends the initial funds from Alice to a 2-of-2
multisignature output that requires sinatures from both Alice and Bob.

• A withdraw transaction (W ) spends the output of the deposit transaction,
and sends a part of it to Alice and a part to Bob. The initial version of
W sends all funds back to Alice and none to Bob.

While the channel is in use, W is not published on the block chain, so it can be
updated after every micro-transaction. The initial version of W sends all funds
back to Alice; subsequent microtransactions can change the balance. Every
version of W has a lock time: as soon as the lock time expires, one of the
versions of W can be published on the block chain.

To ensure that it is always the last version that gets published, each time a
microtransaction is performed, the payer side gives his signature of the updated
W to the receiver side. Each time the direction of the channel is reversed, the
lock time is reduced. The e�ect is that the side who last received funds is the
�rst to be able to spend the output of D, and it is in the interest of that side
to spend the output of D with the most recent version of W .

3 Hash-Time-Locked Contract emulation

Since it is impossible to implement Hash-Time-Locked Contracts (HTLCs) with
the current functionality of Bitcoin, this functionality is instead enforced by
an escrow service (E). While a transaction is locked, but not yet settled, W
contains a third2 output, besides the outputs to Alice and Bob; this third output
corresponds to the to-be-transferred funds. Depending on judgement by the
escrow service, this output should become either spendable by Alice or by Bob.
The escrow service should decide this based on whether it has received the

2There can be more than one transaction locked at the same time: in that case, there will

be a fourth, �fth etc. output, all having the same structure.
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transaction token (T ) before a certain time-out. The transaction token can be
recognized because it hashes to a value H that is known when locking: H =
h(T ), where h is a secure hash function.

3.1 The output script

The output script of W that holds the funds corresponding to the locked trans-
action determines what needs to be signed by who. The standard way of imple-
menting escrow in Bitcoin is with a 2-of-3 multisignature output, requiring two
signatures corresponding with two of three given public keys; in this case, the
public keys of Alice, Bob and the escrow service.

With the existing SIGHASH types, E can not generate a signature for spend-
ing W without knowing the transaction ID of W . Since the transaction ID of
W depends on the signatures of both A and B in W 's input ScriptSig, both
these signatures need to be given to E before E can sign a transaction that
spends the output of W . This creates an unsolveable transaction malleability
problem (besides the other types of transaction malleability, which also apply
here): when W is published on the block chain, the side who publishes it (either
A or B) can change his own signature to another valid signature3 of himself;
this changes the transaction ID of W , and makes E's signature useless.

Two methods are considered for avoiding the unsolveable malleability prob-
lem:

3.1.1 Let E sign a token instead of the transaction

For this method, the output script would be something like this:

OP_IF

OP_DUP OP_HASH160 <pubKeyHash_E> OP_EQUALVERIFY <token_A> OP_CHECKSIGDATAVERIFY

OP_DUP OP_HASH160 <pubKeyHash_A> OP_EQUALVERIFY OP_CHECKSIG

OP_ELSE

OP_DUP OP_HASH160 <pubKeyHash_E> OP_EQUALVERIFY <token_B> OP_CHECKSIGDATAVERIFY

OP_DUP OP_HASH160 <pubKeyHash_B> OP_EQUALVERIFY OP_CHECKSIG

OP_ENDIF

token_A and token_B should be unique tokens, which are only used for this
transaction. If a combination of token and address of E is re-used anywhere,
a signature of E for one transaction might be abused in another transaction.
Because of this, it is recommended that the tokens are calculated in some de-
terministic way (e.g. with a secure hash), based on all relevant information, so
that neither party can re-use an already signed token in a di�erent transaction
to his own advantage.

The corresponding scriptSig would be one of the following:

3Bitcoin uses ECDSA for digital signatures. The creation of an ECDSA signature uses

a random value; using a di�erent random value results in a di�erent signature, even when

re-signing the same data with the same key.
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<sig_A> <pubKey_A> <sig_E1> <pubKey_E> 1

<sig_B> <pubKey_B> <sig_E2> <pubKey_E> 0

The output script requires an op-code like OP_CHECKSIGDATAVERIFY,
which veri�es that a signature corresponds with a given public key, and signs a

given piece of data on the stack (in this case: token_A or token_B). Unfortu-
nately, such an op-code does not exist yet, so this method is discarded.

3.1.2 Delay the signing by E

In this method, a conventional 2-of-3 multisignature output script is used, but
the malleability problem is avoided by delaying the signing by E until after the
lock time of W has expired, and W has been included into the block chain.
In order to provide a faster resolution, E can sign a promise that it will sign
a spend of W in a certain way. The promise can be signed as soon as E has
determined the outcome of the transaction: as soon as it receives T , or as soon
as the time-out happens (whichever happens �rst).

Note that E does not have to remember all its promises: it only needs to
remain capable of verifying its own signatures, when it receives back its own
signed promise from either Alice or Bob.

Since this method works with current Bitcoin functionality, this method is
selected.

3.2 The Transaction Conditions Document

How does E know the hash value H, the time-out value, and what to sign?
Simple: Alice and Bob create a Transaction Conditions Document (TCD),
containing all this information. The TCD should contain:

• The time-out timestamp

• H, the hash of the transaction token T

• The address where to send the funds in case of commit

• The address where to send the funds in case of rollback

Now, it is necessary to cryptographically link the TCD to a speci�c output of
W . An initial thought would be to includeW and the output index in the TCD,
but that would mean that the TCD needs to be updated quite often when W
is updated. If E's promise also signs TCD, then this would also invalidate old
promises.

Instead, linking is done the other way around: W contains information
about which TCDs apply to which of its outputs. This information is en-
coded in an extra OP_RETURN output of W , which contains the secure
hash of all TCDs concatenated together (in the same order as the outputs):
L = [TCD0, TCD1, ...] and h(L) is included in W . This has the additional ad-
vantage that, by signing W , Alice and Bob automatically also sign the contents
of the TCDs.
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4 Data structures summary

The following diagram summarizes the data structures that follow from sections
2 and 3. Note that the Commit and Rollback transactions (C and R) have been
added: on request by Alice or Bob, the escrow service will sign exactly one of
these.

Deposit (D)

Withdraw (W) [time-locked]

Rollback (R)

Transaction Conditions

Document (TCD)

- time-out timestamp

- hash of transaction token

- commit address (B)

- rollback address (A)

Commit (C)

2 of A,B

2 of A,B,EA<data> B

A B

5 Transaction sequences

5.1 Deposit into the channel

Alice wants to use some of her funds to create a channel to Bob. This sequence
is the same as in a traditional microtransaction-channel.

W0 is the �rst version of W , and it sends all funds back to Alice. D is a
deposit transaction that spends some funds from Alice; therefore, it is signed
by Alice.

From To Data

A B W0

B A sigB(W0)
A block chain D
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5.2 Lock funds for a microtransaction

Alice wants to lock funds for a transaction to Bob.
WL is an updated version of W , which has the funds locked. L is the list of

all TCDs of WL.
From To Data

A B WL,L,sigA(WL)

5.3 Commit by settling

Alice , who has previously locked funds for a transaction to Bob, receives the
transaction token T and wants to settle the microtransaction without involve-
ment of the escrow service.

WS is an updated version of W , in which the locked funds are unlocked and
assigned to Bob. L is the list of all TCDs of WS .

From To Data

B A T
A B WS ,L,sigA(WS)

This is the normal way of unlocking a transaction. If this way is followed,
the escrow service is not involved: it does not even know about the existence of
the transaction.

5.4 Rollback by settling

Alice has previously locked funds for a transaction to Bob, but Bob has not
received the transaction token T before the time-out. Bob wants to settle the
microtransaction without involvement of the escrow service.

WS is an updated version of W , in which the locked funds are unlocked and
assigned to Alice. L is the list of all TCDs of WS .

From To Data

B A WS ,L,sigB(WS)
This is a common way of unlocking a transaction in case something down-

stream (on Bob's side) has gone wrong. In this case, the escrow service is not
involved in the transaction, at least not for this channel: it might be involved
in dispute resolution for the downstream channel where the problem occurred.

5.5 Commit by escrow

Alice has previously locked funds for a transaction to Bob. Bob receives the
transaction token T and sends it to Alice before the time-out, but Alice does
not immediately settle the transaction (she is uncooperative).

TCD describes the conditions of the microtransaction.
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From To Data

B A T
B E T ,TCD
E B sigE([”B”, TCD])
B A sigE([”B”, TCD])

After this, Bob blocks new transactions on the channel until Alice cooper-
ates with settling existing transactions correctly. Normally, the promise by the
escrow service will convince Alice to settle, so that no further involvement by
the escrow service is required.

If Alice remains uncooperative until the lock time ofW expires, Bob executes
the part �withdraw with uncooperative neighbor� (section 5.8).

Note that, if the escrow service determines that it receives Bob's T after the
time-out and it has not previously received T before the time-out, it will refuse
Bob's request by sending him the opposite promise:

From To Data

B A T
B E T ,TCD
E B sigE([”A”, TCD])

5.6 Rollback by escrow

Alice has previously locked funds for a transaction to Bob. Alice has not re-
ceived the transaction token T before the time-out, and Bob does not settle the
transaction (Bob is uncooperative).

TCD describes the conditions of the microtransaction.
From To Data

A E TCD
E A sigE([”A”, TCD])
A B sigE([”A”, TCD])

After this, Alice blocks new transactions on the channel until Bob cooper-
ates with settling existing transactions correctly. Normally, the promise by the
escrow service will convince Bob to settle, so that no further involvement by the
escrow service is required.

If Bob remains uncooperative until the lock time ofW expires, Alice executes
the part �withdraw with uncooperative neighbor� (section 5.8).

Note that, if the escrow service has previously received T before the time-
out (e.g. from Bob), it will refuse Alice's request by sending her the opposite
promise. In that case, Alice will also receive T from the escrow service, so that
she can cause a commit on her upstream channel:

From To Data

A E TCD
E A sigE([”B”, TCD]),T
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5.7 Withdraw from the channel (with cooperative neigh-
bor)

Alice wants to close the channel and withdraw all her funds. It is assumed that
there are no remaining on-going microtransactions on the channel.

Wf is a �nal version of W ; Wf has no lock time.

From To Data

A B Wf , sigA(Wf )
B A sigB(Wf )

A, B block chain Wf,signed

5.8 Withdraw from the channel (with uncooperative neigh-
bor)

Alice wants to close the channel and withdraw all her funds.
WA is the last version of W for which Alice has received Bob's signature

(sigB(WA)). This is either the last version of W , or an earlier version in which
Alice has more funds.

Since WA has a lock time, Alice can only start this sequence as soon as
the lock time has expired. Note that, if there are more recent versions of W
in which Bob has more funds, then Bob has the ability and the incentive to
publish a more recent version before Alice publishes WA. This is a good thing,
since Bob's version is better (and hence more correct) anyway, and Alice can
continue with Bob's version just as well as with WA.

From To Data

A block chain WA,signed

After this step, Alice can continue by redeeming the funds locked in WA

for any on-going transactions that belong to her. So, assuming there is such a
transaction, and she has previously received a signed promise by E:

L is the list of all TCDs of WA. The Commit transaction (C) spends the
locked transaction output of WA and sends the funds to Alice.

From To Data

A E WA,signed, L,TCD,sigE([”A”, TCD])
E A C,sigE(C)
A block chain Csigned

6 Remaining vulnerabilities

6.1 Positive escrow failure

There are no cryptographic guarantees that the escrow service will behave as
described in section 5. The escrow service is not only able to not perform actions
it is supposed to do, it is also able to perform actions it is not supposed to do.
Speci�cally, it is able to:

1. sign a commit promise, while it has not received T before the time-out.

9



2. sign a rollback promise, while it has received T before the time-out.

3. sign both a commit promise and a rollback promise.

4. sign a commit transaction, while it has signed a rollback promise.

5. sign a rollback transaction, while it has signed a commit promise.

6. sign both a commit transaction and a rollback transaction (though, ob-
viously , only one of these will end up in the block chain, since they are
double spends of each other).

These can be addressed in the following ways (by convention, let's call the paying
side Alice and the receiving side Bob):

1. E can o�er a public interface (e.g. a website) on which E returns T when
presented with a valid commit promise. If E signs a commit promise
without having received T , this public interface will fail when the incor-
rect promise is given as input. If Alice receives the incorrect promise, she
can publish it, so that other parties can witness this failure (this can be
automated!). So, by performing this kind of failure, E risks a loss of repu-
tation. Even if the failure to return T looks like it is caused by involuntary
down-time of E, sustained down-time will lead to loss of reputation.

2. If the rollback promise is signed before the time-out, and Bob receives it,
Bob can publish it before the time-out, so that E's failure can be veri�ed
publicly, leading to an immediate loss of reputation of E. The scenario
where the rollback promise is signed after the time-out is more problem-
atic. Bob can protect himself against this scenario by publishing T on
the block chain before the time-out (e.g. in an OP_RETURN output).
E should be able to detect this, and as a result E should sign a commit
promise and not a rollback promise. If E signs a rollback promise anyway,
and Bob receives this promise, Bob can publish the rollback promise. To-
gether with T being in the block chain before the time-out, this proves
E's failure publicly, so E risks an immediate loss of reputation.

3. If both are published, this proves E's failure publicly, so E risks an imme-
diate loss of reputation.

4. If both are published, this proves E's failure publicly, so E risks an imme-
diate loss of reputation.

5. If both are published, this proves E's failure publicly, so E risks an imme-
diate loss of reputation.

6. If both are published, this proves E's failure publicly, so E risks an imme-
diate loss of reputation.
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So, all modes of mis-behavior have methods through which third parties can
witness the mis-behavior in an automated way. As a result, all modes of mis-
behavior expose E to a risk of loss of reputation. Since there is no inherent
lock-in to E's business, a single failure will probably end E's business as an
escrow service.

6.2 Negative escrow failure

Another type of failure is that E does not perform a certain action, while it
should do that action (before a certain time-out). This is probably a more
serious threat: not only does not performing an action provide no evidence, it is
also possible to happen accidentally (e.g. by hardware down-time) or by Denial
of Service attacks by third parties. Speci�cally, it is possible that E:

1. does not sign a commit promise, while it has received T before the time-
out.

2. does not sign either a commit promise a roll-back promise after the time-
out.

3. does not sign a commit transaction after W has been placed in the block
chain, while a commit promise was signed.

4. does not sign a rollback transaction after W has been placed in the block
chain, while a rollback promise was signed.

All these modes can be addressed by letting E have a public interface (e.g. a
web interface) on which these signatures can be requested. If the required input
data is published, third parties can verify that E is �down�. Sustained down-
time will lead to a loss of reputation of E; while E is �down�, no one should
initiate transactions that use E as an escrow service.

The �rst failure mode is a special one, since E must witness T before a time-
out. If E is �down� and does not immediately return a commit promise to Bob
(who is the receiving end of the transaction), Bob should publish T on the block
chain. When E becomes �up� again, it should witness this timely publication
of T , and produce a commit promise, even after the time-out. Now, there is
no more time-pressure on the �rst failure mode, so it becomes the same as the
other three.

6.3 Malleability of the deposit transaction

Malleability of the withdraw transaction (W ) is not a problem, since its follow-
up transactions are only created after W is included in the block chain. However,
malleability of the deposit transaction (D) is still problematic: Between the
moment when Alice publishes D on the Bitcoin network and the moment D is
con�rmed on the block chain, malleability of D allows other parties to publish
a modi�ed version of D, which has a di�erent transaction ID. If this modi�ed
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version is accepted on the block chain instead of the original one, this invalidates
Bob's signature of W0. As a result, Bob can hold the deposited funds hostage.

As long as transaction malleability continues to exist, this problem will con-
tinue to exist for all4 types of micro-transaction channels. Luckily, in the case of
the deposit transaction, the attack is not guaranteed to succeed (in fact, since
the original D is published �rst, it is probably more likely to fail than to suc-
ceed), and it is very likely to be detected. Nevertheless, it is still an existing
vulnerability in this design, and in all microtransaction channel designs.

7 Conclusions and recommendations

7.1 Comparison with the Lightning design

By using the methods described in this document, a precursor the Lightning
network can be created, using only Bitcoin functionality that already exists
right now. Since, on a high level, the behavior of Lightning's Hash-Time-Locked
Contracts is emulated, such a precursor network can be gradually converted to
a true Lightning network, once true Lightning-style HTLCs become available.

While the escrow service in this design is publically auditable to a high de-
gree, it can still cause damage by misbehaving. It is therefore recommended that
users only use escrow services that have a strong reputation, and to continuously
keep monitoring this reputation. The possibility of escrow service misbehavior
makes this design less robust than the original Lightning design. It is therefore
still recommended to add the missing features, required by Lightning, to Bitcoin
as soon as possible.

A potential danger exists when the network becomes popular, while the
Lightning features are not enabled: in that case, escrow services can become an
established power in the Bitcoin ecosystem, that has everything to lose if the
Lightning features are ever enabled. They might be be very motivated to stop
these features from being enabled, thereby preventing progress from happening.

7.2 Bitcoin improvements

It was a bit of a surprise discovery during the design of this system that an op-
code like OP_CHECKSIGDATAVERIFY does not exist yet. If the aim is for the
Bitcoin scripting language to provide a general-purpose cryptographic toolset,
then it is strange to lack the ability to verify signatures that sign arbitrary
data. For the design described here, such a feature would remove the need for
the separate promising phase. There are probably other applications as well
that could bene�t from such a scripting feature.

Finally, like all micro-transaction concepts, this design requires a solution
for the transaction malleability problem. Luckily, there seems to be a wide

4Maybe someone can come up with a smart microtransaction channel design that does not

su�er from this issue, but I have never seen one, and I strongly doubt it is possible.
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consensus in the Bitcoin community that the malleability problem needs to be
solved.
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