Combining Bitcoin and the Ripple to create a
fast, scalable, decentralized, anonymous,
low-trust payment network (draft 2)

January 15, 2013



Contents

1 Introduction 3
1.1 Bitcoin. . . . . . . o 3
1.2 TheRipple . . . . . . . . 3
1.3 Summary and properties of the proposed system . . .. ... .. 4

2 Ideas 6
2.1 Anonymous transaction routing . . . . . ... ... ... 6

2.1.1 The communication network . . . .. ... ... .. ... 6
2.1.2 Public key exchange . . . .. .. ... ... ... ... 6
2.1.3 Routing . .. ... ... . e 7
2.2 Using Bitcoin for low-trust “shared-property” Ripple accounts . . 7
2.2.1 Shared property instead of debt . . . . . ... ... L. 7
2.2.2 Using Bitcoin . . . . . .. ..o o000 8
2.2.3 Sequence numbers and lock times . . . . ... ... .. .. 8

2.3 How the Ripple improves speed and scalability of Bitcoin payments 9

2.4 Using Bitcoin for the final commit/rollback decision . . ... .. 10
2.4.1 Necessity of rollback . . . . ... ... ... L. 10
2.4.2 Atomic vs. non-atomic commits . . . . ... ... .. .. 10
243 Using Bitcoin . . . . . .. ... o000 11

3 Scalability analysis 14

3.1 Assumptions . . . ... 14
3.1.1 Number of transactions . . . . .. .. ... ... ..... 14
3.1.2 Number of “unspent transactions” . . .. ... ... ... 15
3.1.3 Degrees of separation . . . ... ... ... ... .. 16

3.2 Centralized payment networks . . . . . . ... ... ..., 16

3.3 “Full” Bitcoin . . . . . .. ... ... 16

3.4 “Two-tier” Bitcoin . . . . . . . . . ... 17

3.5 The Ripple, without using Bitcoin . . . . .. ... ... ..... 17

3.6 The Ripple, with using Bitcoin . . . . .. .. ... ... ..... 18

3.7 Conclusions . . . . . . .. . 18



4 Future work 20

4.1 Remaining attack methods . . . .. .. ... ... ... .. 20
4.2 Transactionfees. . . . . . . . . . ... 20
4.3 Interoperability . . . . . . .. .. ... Lo o 21
4.4 Forked transaction paths . . . . . . .. ... ... .. ... ... 21



Chapter 1

Introduction

1.1 Bitcoin

Bitcoin uses a proof-of-work chain, called the block chain, to create a distributed,
fully decentralized timestamp server. The objects that are being timestamped
are transactions; the validity of transactions and their consistency with pre-
viously timestamped transactions are checked: transactions that fail this test
are not included in the block chain. Because of this, the block chain acts as a
decentralized consensus making device. For instance, in the case that certain
bitcoins are spent twice: the two transactions are inconsistent with each other,
so eventually only one will end up in the block chain.

The downside is that it takes a relatively long time before a reliable consensus
is reached: on average, a new block is created once every ten minutes, but since
it is possible that in the end a block is not used in the block chain, it is necessary
to wait for several blocks to make sure the transaction is irreversible.

Also, the solution scales very poorly with the number of transactions: to
verify a single Bitcoin transaction, one needs acces to all Bitcoin transactions,
at least from the moment of the oldest “input” of the transaction.

1.2 The Ripple

The Ripple monetary system consists of a decentralized peer-to-peer network.
The nodes of the network are individual users, and the connections between
nodes are credit relationships between users. Transactions are performed by
finding a payment route between payer and payee, and letting each intermediate
party receive money from the payer side, and send money to the payee side of the
route. Every transaction changes the credit balance on the credit relationships
that are involved, such that the total balance for intermediate parties remains
unchanged!, the total balance for the payer decreases and for the payee increases.

lexcept for a possible transaction fee, which will typically increase the balance of the

intermediate party, as a reward for assisting in the transaction.



Since the Ripple works with credit relationships, neighboring parties (who
have a credit relationship) need to trust each other. Preferably, they know each
other’s identity, so that payback of debt can be enforced by law, if necessary.
The Ripple provides neighbors strong evidence for the amount of debt they have
to each other.

The following phases can be identified in a Ripple transaction:

e Route establishment: a route through the network, between payer and
payee, is found.

e Promising: neighbors in the route promise to pay each other (pay = change
the credit balance) under the condition that cryptographic evidence is
provided that the transaction is going to be committed.

e Payment: The cryptographic evidence of transaction commitment is dis-
tributed, and credit balances are changed according to the promises.

Depending on the exact concept to be chosen, these phases can be split into
different passes, or one or more of these phases can be combined into a single
pass.

The main problem in the Ripple is that transactions are not committed
atomically. Depending on the exact details, this can have different consequences.
If a part of the participants commits the transaction while another part aborts
it, then some participants lose value while others benefit. This can often be
exploited, such that a participant can let a transaction fail in such a way that
he benefits and some other participant loses. This can be solved by having no
abort /rollback mechanism. This removes the financial motivation for creating
transaction failures, but a transaction that cannot be rolled back and will not
be committed locks up money of participants (“nobody can spend it”). This is
a serious Denial of Service.

The analysis of a detailed Ripple concept should not only focus on the “good
flow” of a transaction and how it generates cryptographic proof for its partici-
pants, but also on the ability to abort a transaction in all its different stages,
and the consequences when a participant no longer follows the “good flow” (in-
tentionally or unintentionally).

1.3 Summary and properties of the proposed sys-
tem

The payment system as proposed in this document is a variation on the Ripple.
While the Ripple allows payments in any currency, this variation specializes on
Bitcoin transactions. As a result of the way how Bitcoin is used, people need
less trust in each other to become neighboring nodes. Because of this, more
and higher-capacity links can be created, potentially even in the absence of law
enforcement, e.g. between people who remain pseudonymous to each other.
Also, the risk of denial of service attacks can be reduced.

To summarize the properties of the proposed system:



Speed: When there are no problems while performing a transaction, the time
between starting the transaction and having it fully, irreversibly commit-
ted is limited only by communication delays between nodes. A transaction
should typically take less than a second. When there are problems with a
transaction, the worst-case delay until the final, irreversible decision be-
tween commit and rollback is limited by the time between Bitcoin blocks.
Even a problematic transaction will be resolved within approximately one
hour.

Scalability: Transactions without problems, which are expected to be most
transactions, will not be registered in the Bitcoin block chain. As a result,
the size of the block chain will be much smaller than in a pure Bitcoin
system. Unlike some Ripple concepts, the selected routing mechanism
allows for the use of routing tables, so the network can probaly reach a
similar size as the Internet. Even then, the number of “uncertain” hops in
a route is expected to be much smaller than on the internet, since most
users will probably cluster together on a small number of hosts, and each
host can solve the routing problem internally in a trivial way.

Decentralization: While it is allowed, and for routing purposes desired, that
many users will share a single host computer with each other, users are
not required to do this, and every user is allowed to set up his own host
computer. Hosts form a decentralized peer-to-peer network, and as long
as a person has at least a single payment connection with another user,
that person can perform transactions with the entire network through that
connection.

Anonymity: The identity of the payer and payee can be hidden from interme-
diate parties, and they can remain pseudonymous for each other. Direct
neighbors in the network can remain pseudonymous for each other; par-
ties which are not direct neighbors remain anonymous for each other. A
hosting provider and its user can remain pseudonymous for each other.
Measures can be taken to avoid that one neighbor gains knowledge about
the contact (identity /pseudonym, balance) with another neighbor.

Low-trust: Users need to fully trust the host they use for using the system,
but they can choose to run their own host. Neighbors are unable to steal
from each other, but they can perform a denial of service on each other.
When that happens, both neighbors are unable to access their part of the
money, until the denial of service is resolved. Payer and payee need to
trust each other (usually only in one direction) if delivery of the good or
service is not inherently linked to performing the payment. No trust is
needed between non-neighboring users.



Chapter 2

Ideas

2.1 Anonymous transaction routing

2.1.1 The communication network

The Ripple works on top of a communication network. Neighboring nodes in
the Ripple network are expected to have a way of communicating with each
other. Non-neighboring nodes may or may not have some way of communicat-
ing; in a transaction, payer and payee are expected to have some (temporary)
communication channel between each other. The exact nature of these com-
munication channels should not be specified, so that the Ripple network can
be implemented on multiple types of communication channels. For instance,
most nodes will simply communicate over TCP /IP+SSL, but some may choose
to use the TOR network. Other may choose to use a dedicated physical ca-
ble. In POS systems, some combination of RFID+bluetooth or RFID+WLAN
might be used. The only thing required of a communication channel is that it
is sufficiently fast to finish transactions within their time-out limits.

2.1.2 Public key exchange

Two parties who communicate with each other might want to use a digital
signature system to authenticate messages, and an encryption system to make
sure that messages remain confidential. They need to have a verified public key
of each other for this purpose.

In order to improve anonymity, a node can use multiple public keys:

e One permanent! public key per neighbor. Only you and that neighbor
know that this public key belongs to you. In fact, knowledge about this
public key is not useful for anyone else, because it will only be used for
communication with this specific neighbor.

1 Permanent, until there is some reason to replace the key. This is the same as e.g. for SSL
certificates and PGP encryption.



e One temporary public key per transaction. For each transaction, a new
key pair is created. For the neighbors involved in the transaction, the
temporary public key is signed with the permanent key, so that, for the
neighbors, a signature with the temporary key (within the context of the
transaction) has the same value as a signature with the permanent key.
This temporary key can be transmitted to all other parties in the transac-
tion. Only your neighbors in the transaction can see that this key belongs
to you; other participants in the transaction can not even see that you are
the same person as in another transaction that was also processed by you.

In fact, instead of using a single temporary public key in a transaction, you
might use multiple keys: one for each neighbor, and an arbitrary number of
“intermediate” keys. To other participants, those public keys look the same as
a chain of separate participants. By randomizing the number of keys to be used
in a transaction, other participants can not be certain about the actual number
of participants in the transaction. In fact, even if your two neighbors worked
together, they would not be able to figure out that they have a shared contact.

2.1.3 Routing

Not exchanging any permanent identity information beyond direct neighbors
creates a problem for routing transactions through the network. Some Ripple
concepts deal with this by doing completely “blind” routing (trying all possible
directions without knowing which direction is most likely to succeed).

There is another possibility: if some nodes in the payment network allow
their permanent public keys to be published across the entire network, they can
be included in routing tables. Payer and payee can then negotiate which of these
“publicly known” nodes to use as a “meeting point”. After agreeing on a meeting
point, both can find a route to the meeting point, and the two routes together
form the payment route. Payer and payee can both remain anonymous, while
the “meeting point” node can remain pseudonymous. In fact, even the direct
neighbors of a meeting point don’t have to know that they are direct neighbors:
they only know that their neighbor provides a route to the meeting point.

To some degree, this “meeting point” set-up is similar to how TOR hidden
services are set up.

2.2 Using Bitcoin for low-trust “shared-property”
Ripple accounts

2.2.1 Shared property instead of debt

One of the disadvantages of having a credit relationship between neighbors in
the payment network is that it is possible for participants to have a lot more debt
than they are capable of paying back. Even when neighbors know each other and
can inspect each other’s properties and income, the problem still exists, since a



participant can have debts to a large number of people, and those people have
no way to know about any of the other debts. In the current financial system,
this is solved to some degree by inspections of financial authorities, but the
decentralized nature of the Ripple makes this impossible.

The proposed solution here is to work with shared property instead of debt.
The idea is that every pair of neighbors has a certain amount of shared property,
and they agree with each other which fraction of the shared property can be
claimed by the one, and which fraction can be claimed by the other. As long
as the shared property can not simultaneously be shared with third parties, the
problem of “hidden debts” does not exist.

2.2.2 Using Bitcoin

The shared property concept can be implemented with bitcoins, by giving bit-
coins a ScriptPubKey that requires signatures from both neighbors for with-
drawing. If one of them wants to withdraw some of the shared bitcoins, he
needs permission from the other to do so. Since M-of-N signature functionality
is soon expected to be accepted as a “standard transaction” in the standard
Bitcoin client, this concept does not require any new functionality in Bitcoin.
With this concept, the required trust between neighbors can be a lot lower
than when using debt. In fact, it is not unthinkable that neighbors remain
pseudonymous to each other. Neighbors can not “steal” from each other: the
worst they can do to each other is a “denial of service”, by refusing to sign the
transaction when the other party wants to withdraw bitcoins from the shared
account. This can be done in a “hijacking” set-up, where the malicious neighbor
refuses to release any of his victim’s money, unless the victim agrees to give a
certain percentage of his money to his malicious neighbor. This is something
to be taken into consideration when people decide to become neighbors in a
pseudonymous way. As a counter-measure, they might for instance require that
both parties will always own an approximately equal part of the shared bitcoins,
so that in a denial of service scenario, both will lose access to a similar amount of
money. This will discourage both parties to enter the denial of service scenario.

2.2.3 Sequence numbers and lock times

Another way to reduce the risk of “hijacking” is to use the (currently disabled)
Bitcoin feature of sequence numbers and lock times. The idea is that the neigh-
bors always have a Bitcoin transaction that sends each part of the shared account
to its owner. Each time the balance between the neighbors changes (because
of a Ripple transaction happening through the link), they create a new Bitcoin
transaction that replaces the previous one. This Bitcoin transaction has the
following properties:

e It has a nonzero lock time, somewhere in the future, and a sequence num-
ber that is less than UINT MAX. Because of this, the transaction will
not be included in the block chain until the lock time is reached.



e Each time the transaction is replaced, the new transaction has a sequence
number that is higher than in the previous transaction. Since Bitcoin only
accepts the transaction with the highest sequence number, this effectively
makes the previous transaction invalid.

e Like in the previous section, each transaction requires signatures from
both neighbors.

Now, if one of the neighbors wishes to withdraw money from the shared account,
he can just create a new Bitcoin transaction that performs the withdrawal and
(if applicable) sends the rest to a new shared account. If the other neighbor
refuses to sign this, then the only problem is that the to-be-withdrawed money
is not immediately available: it will automatically become available as soon as
the lock time is reached.

A disadvantage of this approach is that the shared account can not live longer
than the initially chosen lock time. It is not advisable to increase the lock time
in later versions of the transaction: as soon as the initial lock time has passed,
older versions of the transaction can be accepted into the block chain, and the
only way to prevent this is to continuously make sure that Bitcoin miners are
aware of the existence of the most recent version. So, the best way to deal with
this is to switch to a new shared account, as soon as the old one is about to
reach its lock time. Since this involves placing a Bitcoin transaction into the
block chain, it should be done as infrequently as possible.

Also, this approach is insufficient to make the neighbor link completely trust-
free. In fact, it might be less secure than the design of the previous section, be-
cause another exploit is possible: after a large Ripple transaction is committed,
the “paying” side of the link can refuse to sign the updated version of the Bitcoin
transaction. Then, all he has to do is wait for the lock time and make sure the
last signed transaction is known to the Bitcoin miners: that one will give him
the amount he had before paying, which is more than he should receive.

The only way to secure against this exploit, is to exchange and sign the
new transaction version during the promising phase of a Ripple transaction,
and making sure that the conditions of committing the Ripple transaction au-
tomatically makes the new Bitcoin transaction valid. This might be feasible
if the commit state of a Ripple transaction can be determined with only some
combination of digital signatures; unfortunately, the commit/rollback concept
of section 2.4 seems too complicated to be used here.

2.3 How the Ripple improves speed and scalabil-
ity of Bitcoin payments

Transactions that are performed through the Ripple network don’t need to be
registered in the Bitcoin block chain. If the Ripple concept becomes popular
for Bitcoin payments, it is expected that a large majority of the transactions
can be routed through it. The only major remaining use cases for traditional
Bitcoin transactions are the following:



e Depositing / withdrawal from the shared accounts between neighbors

e Transfer of amounts of Bitcoins that are so large that the Ripple network
can not handle them

e Transfer to/from traditional Bitcoin wallets, for e.g. large long-term sav-
ings, or other scenarios where trust in Ripple neighbors is insufficient

e The final commit/rollback mechanism, as explained in the next section

Because of this, the size of the Bitcoin block chain can remain much smaller
than in a traditional Bitcoin economy. Keeping the block chain small assists in
keeping Bitcoin decentralized, since it allows a larger number of people to have
access to the full block chain.

2.4 Using Bitcoin for the final commit /rollback
decision

2.4.1 Necessity of rollback

One of the problems in Ripple networks is that, whenever a participant does not
respond as is expected of him for the “good flow” of a transaction, a transaction
has to be rolled back, or else it will stay forever in an undecided state. Keeping
transactions in an undecided state is not a good idea, since any money that is
locked in such transactions can not be used by anyone: it leads to a financial
loss for all involved parties, and a decrease of capacity for the Ripple network.
The only alternative is: it must be possible to roll back a transaction in all its
stages, until the final commit decision. There must be a final commit decision
after which no rollback is possible anymore: otherwise, the participants of a
transaction will never have certainty over the fractions of the shared accounts
that are assigned to them, and the fractions they can safely assign to their
neighbors.

2.4.2 Atomic vs. non-atomic commits

Some Ripple concepts use a non-atomic commit scheme: the transaction is
committed piece-by-piece, one connection at a time. However, if this process
takes too long, the not-yet-committed part of the chain can decide to roll back,
so the transaction ends up in a partially-committed, partially rolled back state.
On the boundaries between the “committed nodes” and the “rolled back” nodes,
there are nodes that benefit from this, and nodes that lose from this. Typically,
committing is done in the from-payee-to-payer direction, so that the node that
doesn’t continue the commit will be the losing party, but even then it is possible
for malicious parties to set up transactions where they will be the benefiting

10



side, and some other (possibly unknown) party will end up as the losing side?.
Because of this, non-atomic commits are a bad idea.

Commits in a Ripple network can be made atomic by having a transaction
document that has to be signed by all participants of the transaction in order to
commit the transaction. The transaction document can specify several things,
e.g. the amount to be transferred, and the public keys of all participants.
Each neighbor pair will only consider the transaction to be committed for their
connection if they have the transaction document together with all its signatures.
Effectively, the moment the last participant signs the document is the moment
when the transaction is committed.

A remaining problem in this concept is the transmission of signatures be-
tween the participants, and especially the last signature, which determines
whether the transaction has been committed. Typically, they will be trans-
mitted in the payee-to-payer direction: this is the direction where it is in the
interest of nodes to make sure the next node decides to commit. In the end,
however, the same problem remains as in non-atomic commits: if transmission
of the last signature is too slow (or starts too late!), a part of the chain decides
to commit while another part decides to roll back, and the situation can be
exploited in basically the same way as non-atomic commits.

2.4.3 Using Bitcoin

The fundamental problem is how to reach consensus about the commit decision
in a decentralized way. It is essential to realize that this has already been
solved in Bitcoin, although the solution is a bit slower than desired for e.g.
POS systems. Luckily, the Bitcoin solution can be used in a way that solves
problematic transactions, while non-problematic transactions are not slowed
down by it.

The idea is that, when a participant of the Ripple transaction didn’t receive
all signatures, and some time-out has passed so he wishes to roll back the Ripple
transaction, he creates a Bitcoin transaction with an output that can be spent
in the following ways:

e by providing all signatures of the Ripple transaction, or

e by providing a signature, which can only be provided by the participant
who created the Bitcoin transaction

All participants keep monitoring the Bitcoin block chain, and look for all oc-
currences of this type of transaction that correspond to the Ripple transaction
they are participating in. If a participant has all signatures of the Ripple trans-
action, he will use them to spend the output of the Bitcoin transaction as fast
as possible. Typically, there will be multiple participants who have all signa-
tures, so they will all try to spend the output of the Bitcoin transaction. One

2This is done by arranging a transaction where the malicious node is payee (and optionally
also payer), waiting until the transaction is almost timed out, and then asking the direct
neighbor of the payee to commit the transaction.

11



of these attempts will end up in the Bitcoin block chain. Since this will give all
participants access to all signatures, this will commit the transaction.

After monitoring the block chain for a couple of blocks, without seeing its
output being spent, the original creator of the Bitcoin transaction decides to
spend it, using the second method. As soon as this ends up in the block chain,
other participants see it, and use it as proof that the Ripple transaction has
been rolled back. This proof will be considered to have higher authority than
having all signatures of the transaction.

A non-problematic transaction will be decided very fast: as soon as a partic-
ipant has received all signatures, he knows that the transaction is committed.
However, he will have to continue monitoring the block chain, in case one of the
participants attempts to roll back the transaction. Stopping such an attempt is
eagy if you have all the signatures, but it has to be done; especially the payee
has an interest in doing this; he might want to use redundant hardware to make
sure he is not temporarily disconnected from the Bitcoin network.

The participants have to agree in advance on the maximum block chain
length where rollback attempts are still accepted. As soon as this length is
reached without any rollback, participants who have all signatures can perma-
nently consider it to be committed. Participants who don’t have all signatures
can continue to ask their neighbor for them; preferably the one on the payee
side, since that one has an interest in a comitted transaction. If this doesn’t
reveal all signatures, the situation has to be resolved manually. However, it is
expected that this will be an extremely rare situation, since all participants are
capable of preventing it.

The participants also have to agree in advance to the minimum number of
blocks between the Bitcoin transaction and the moment when it is spent in
“rollback” mode. This minimum will give other participants an opportunity to
spend it in “commit” mode. Typically, a Ripple transaction will specify the
following:

e Maximum block index of “rollback attempt” (typical value: current block
chain length + 2)

e Minimum block distance between “rollback attempt” and “rollback” (typ-
ical value: 3)

e Maximum block distance between “rollback attempt” and “rollback” (typ-
ical value: 5)

The amount of bitcoins in a rollback attempt should be as low as possible, since
it provides an incentive for the “last signer” of the Ripple transaction to keep his
signature secret for others, so that he is the only one who can claim the bitcoins
of a rollback attempt. If possible, this amount should be zero.

If multiple participants decide to create rollback attempts, it is theoretically
possible that some will be spent in a way that indicates “commit”, and others in
a way that indicates “rollback”. There has to be some protocol to decide between
these. One way would be to say that the one with the lowest transaction hash

12



value is the one that decides between commit and rollback. The protocol itself
is not important, as long as it can be evaluated by all participants, and leads to
the same conclusion for all of them.

13



Chapter 3

Scalability analysis

In this section, several payment concepts will be compared for scalability and
the feasibility of global-scale usage. Because of the large number of factors
involved, the big-O notation will not be used: instead, the order of magnitude
of processing, storage size etc. will be estimated for a single case: use by an
entire world population of 10'° people.

3.1 Assumptions

3.1.1 Number of transactions

currence.nl! shows the following numbers for 2008 in the Netherlands, which is
a country where electronic payment has replaced cash to a high degree:

e Number of “PIN” (debit card for POS systems) payments: 1.756 - 10°

e Number of “Chipknip” (electronic cash for POS systems) payments: 1.76 -
109

e Number of direct debit payments: 1.226 - 10°

e Number of “Acceptgiro” payments: 171.6 - 10° (used in 20% of all online
purchases, but used for other purposes as well)

e Number of “iDeal” (internet banking) payments: 28 - 10° (used in 35% of
all online purchases)

In a news article?, which also has Currence as source, it is reported that in 2010
there were 2.1 - 10° “PIN” transactions, and almost 3 - 10° cash transactions.
From these numbers, the following can be estimated for the Netherlands:

e Number of POS transactions per year: 5 - 10°

Lhttp:/ /www.currence.nl/Downloads/Cu_CN_2009_01.pdf
2http://www.nu.nl/economie/2422599 /pinnen-gaat-winnen-van-contant.html

14


http://www.currence.nl/Downloads/Cu_CN_2009_01.pdf
http://www.nu.nl/economie/2422599/pinnen-gaat-winnen-van-contant.html

e Number of online purchases per year: 80 - 10°
e Number of other transactions per year: at least 1-10°

As expected, the number of online purchases is insignificant w.r.t. the num-
ber of POS transactions, but there is still a large number of transactions that
doesn’t fit in either category. While these statistics mostly count end consumer
transactions, the number of business-to-business transactions is probably lower
than this (when not taking high-frequency trading into account): most of them
will be done manually, so it is someone’s job to perform them. So, the number of
business-to-business transactions is limited by the number of people performing
them, and only a small percentage of the population has a job position that
involves making a high number of such transactions.

With the “other transactions per year” category, business-to-business trans-
actions and some cash microtransactions that weren’t accounted for in the Cur-
rence statistics, it doesn’t sound unreasonable to estimate the total number of
transactions as 10'° per year. For 16.5 - 109 citizens, this is 1.7 transaction per
person per day, which doesn’t sound unreasonable either. Rounding upward to
2 transactions p.p.p.d., this gives a total number of 20-10° transactions per day
for a future highly developed world population of 10'° people.

3.1.2 Number of “unspent transactions”

For the scalability of Bitcoin, it is important to know how many “unspent trans-
actions” there are: all unspent transactions need to be stored, and this takes
more storage for lots of small transactions than for a few large transactions. For
an estimation, let’s use some US economic data:

e Population: 300 - 106
e Money supply (M2, 2011)3: 9 - 10'2 dollars

So, that is 30000 dollars of money supply per person. Since most transactions are
small, we can estimate the total number of “unspent transactions” by estimating
the size of the smallest transactions; in 2011, this is probably around 1 dollar.
So, if the US economy ran on Bitcoins, there would be approximately 30000
unspent transactions per person. For a worldwide economy of 10 - 10° people,
that would be 300 - 10'2 unspent transactions.

On the other hand, such small transactions are typically collected relatively
quickly (e.g. daily or weekly), and most long-term savings are probably filled
with larger transactions, e.g. monthly salary. When dividing the money supply
by a montly salary of 2000 dollars, we get 15 unspent transactions per person,
or 150 - 10° unspent transactions worldwide.

The second estimate is so much smaller than the first estimate that, even if
only a small fraction of the small transactions stays unspent for a long time, it
will still dominate the total number of unspent transactions. Because of this,
the number of unspent transactions is estimated to be 10'3.

3Source: https://en.wikipedia.org/wiki/File:MB, M1 and M2 aggregates from 1981 to 2012.png

15


https://en.wikipedia.org/wiki/File:MB,_M1_and_M2_aggregates_from_1981_to_2012.png

3.1.3 Degrees of separation

For the length of paths in Ripple networks, it is assumed that the “six degrees of
separation” law is true. The actual path length might be shorter if some amount
of centralization is present, or longer if path-finding does not work efficiently.

3.2 Centralized payment networks

Electronic POS transactions are typically performed through a very small num-
ber of payment processors, such as VISA and MasterCard. Transaction data
can be sent more or less directly between POS terminals and the server farms
of the payment processor.

The bank network mostly follows a tree structure: individual banks are
connected through national wire transfer networks, which are connected through
the international SWIFT network. One could argue that a payment processor
network, which has a star shape, is a special case of the tree shape: a payment
processor network only has two levels (customer and payment processor) instead
of the multiple levels of the international wire transfer network. In both cases,
the number of levels in the tree is very low: the maximum is approximately
four.

For every transaction, the following has to be done:

e On every level of the tree: (cryptographic) authentication of the transac-
tion

e On every level of the tree: check whether account balances are sufficient
e On every level of the tree: adjustment of account balances

e When desired: storage of transaction information (assumption: stored for
1 year)

In the multi-level wire transfer network, inter-bank transactions are usually bun-
dled together into large “bulk transactions” between banks, which can happen
e.g. once per day. This is one of the reasons why wire transfers take such a long
time. This bundling has the effect of nearly eliminating the need for processing
or storage on higher levels of the tree.

Processing per person per day Cryptographic operations 10°
Balance look-up and update 109
Communication per person per day | Network transfer of transaction data | 10°
Storage per person Account balance 10°
Transaction data 103

3.3 “Full” Bitcoin

Here, the possibility is considered of everybody using a “full” Bitcoin node.
Every node stores all block headers and verifies every new block, including all

16




new transactions. It is still assumed that fully spent transactions are “pruned”.
Without this pruning, transaction storage would grow continuously, without
ever reaching a steady state.

Since everybody verifies and stores everybody else’s transactions, the number
of checks and the amount of storage space equal the total number of transactions.
Since everybody needs to receive every transaction at least once, the amount
of network data to be transferred also equals this number (assuming the peer-
to-peer network is efficient). The amount of transaction data to be stored per
person equals the number of unspent transactions.

For the number of cryptographic operations, the mining “proof-of-work” will
be ignored. It is expected that, when the number of Bitcoin users is large,
the average “proof-of-work” difficulty per Bitcoin user can be very low, without
threatening the security of Bitcoin. Storage space of the block headers is also

ignored.
Processing per person per day Cryptographic operations 1010
Transaction balance check 1010
Communication per person per day | Network transfer of transaction data | 1010
Storage per person Account balance 0
Transaction data 1013
3.4 “Two-tier” Bitcoin
It is possible to have a future Bitcoin system where block storage and verification
is only done by a small “elite” of miners and service providers. It is not clear
yet to what extent the “elite” would have an opportunity to abuse its position
to excercise power over the rest of the population. For simplicity, it is assumed
here that having 10% independent members in the “elite” provides sufficient
competition to protect the rest of the population against abuse.
Processing per person per day Cryptographic operations 103
Transaction balance check 103
Communication per person per day | Network transfer of transaction data | 103
Storage per person Account balance 0
Transaction data 10°
3.5 The Ripple, without using Bitcoin
With the “six degrees of separation” assumption, there are typically seven par-
ticipants in a transaction. For storage of transaction data, the same assumption
is made as for centralized payment networks.
Processing per person per day Cryptographic operations 107
Transaction balance check 10T
Communication per person per day | Network transfer of transaction data | 107
Storage per person Account balance 100
Transaction data 103

17




3.6 The Ripple, with using Bitcoin

For evaluating the suggested combination of the Ripple and Bitcoin, it is im-
portant to estimate the fraction of transactions that will end up in the block
chain. It is expected that, as soon as people have a more or less stable financial
situation, their Ripple links almost never have to change (less than once per
person per year). Deliberate transaction failure will also be rare, if there is no
incentive for creating such failures. It is expected that accidental failures will
be the most common, mostly due to communication failure. Since failure has
to occur somewhere during a transaction, even this will be rare. The number
of in-blockchain transactions will be estimated as one per person per year, or a
total of 27 - 10° per day.

The number of unspent transactions will also be much lower than in a normal
Bitcoin system, since most transactions will take place outside the block chain.
However, since every Ripple link corresponds with an unspent transaction, it
will not drop as much as the number of in-blockchain transactions. Every person
will probably add some unspent transactions to the system.

Processing per person per day Cryptographic operations 107
Transaction balance check 107
Communication per person per day | Network transfer of transaction data | 107
Storage per person Account balance 100
Transaction data 1010

3.7 Conclusions

While the proposed system is definitely not the most efficient payment system
for worldwide usage, it is a lot better than the “full” Bitcoin concept. In fact,
the numbers suggest that the proposed system is already feasible with present-
day (2013) personal computer hardware, while this is not the case with the
“full” Bitcoin concept (at least not at this scale). While possible on present-
day personal computers, it would still take quite a large percentage of system
resources (especially storage), making the use unattractive. This does not have
to be a real-world problem:

e Bitcoin is still far away from being used on such a large scale. As long
as it is still a small-scale system, resource consumption is much lower -
in fact, this is why the “full” Bitcoin concept is currently still possible on
personal computer hardware, even without transaction pruning. It will
take several years to grow to such a huge scale, and in these years, the
cost per amount of resource (e.g. per byte of storage space) is expected
to drop a lot.

e There is no reason why the proposed system can not be combined with
the “two-tier” Bitcoin concept, causing a further reduction in per-person
resource usage. In fact, this is expected to happen, if many people decide
to let third parties host their Ripple nodes. The reduction of block chain

18




size because of the Ripple system means that less centralization is needed
to have the same efficiency as a “pure” Bitcoin system.

When comparing all concepts, a trade-off is visible between having a low-trust
system on one hand, and having a resource-efficient system on the other hand.
Clearly, in the absence of trust, more resources are needed as people continuously
need to verify each others’ behavior.

19



Chapter 4

Future work

4.1 Remaining attack methods

The most important remaining issue is how to prevent denial of service attacks.
No matter how robust the proposed final rollback mechanism is, the to-be-
transferred money is still locked for a considerable amount of time, if one of
the participants refuses to give his signature. The problem is worsened by the
use of anonymity measures, which also provide anonymity to the attacker. It is
unknown whether it is possible to identify malicious nodes, even in the presence
of the anonymity measures, and to stop routing transactions through that node.
It might help that many nodes will typically use the same host together, and
the behavior of a node is determined by the software of the host: a malicious
node necessarily has to run on a malicious host. This reduces the problem to
identifying and avoiding malicious hosts.

4.2 Transaction fees

This document does not cover transaction fees. However, because of the risks
involved with transferring other peoples’ transactions (at least the risk of making
money inaccessible for some time), it might be necessary to pay transaction fees
to intermediate nodes. Some Ripple concepts accumulate all fees over the entire
route, and let payee or (usually) payer pay all transaction fees. An alternative
is the way how internet access costs are distributed: let direct neighbors agree
with each other about transaction fees, but don’t distribute (information about)
these costs across the network. It is unknown what the full effects are of either
choice.

20



4.3 Interoperability

This document focuses on a Bitcoin-only network. It might be interesting to
provide gateways to a more traditional Ripple network that (also) deals with
other currencies. To make this possible, either the protocol of the Bitcoin-only
network has to incorporate all traditional Ripple features, such as currency
conversion, or users of the Bitcoin-only network need to make use of special
gateway service providers to have access to the traditional Ripple network. In
the second case, a transaction that goes through both networks simply consists
of two sub-transactions, one for each network.

In actual software implementations, it is probably possible to delay the dif-
ficulty of dealing with interoperability, by letting the software support multiple
“transaction protocols”; and have a sort of plug-in architecture for adding other
transaction protocols. This would allow all Ripple variations to join into one
huge, technologically heterogeneous network. The advantages and disadvan-
tages of this approach need to be listed.

4.4 Forked transaction paths

Throughout this document, it has been assumed to some degree that a transac-
tion is performed through a linear chain of participants. For transferring larger
amounts, it might be useful to allow transactions to fork: allow intermediate
nodes to split up the total amount into smaller pieces, and let each piece travel
through a different route. It is unknown how difficult it is to implement this
and how much benefit it will actually provide.

21



	Introduction
	Bitcoin
	The Ripple
	Summary and properties of the proposed system

	Ideas
	Anonymous transaction routing
	The communication network
	Public key exchange
	Routing

	Using Bitcoin for low-trust ``shared-property'' Ripple accounts
	Shared property instead of debt
	Using Bitcoin
	Sequence numbers and lock times

	How the Ripple improves speed and scalability of Bitcoin payments
	Using Bitcoin for the final commit/rollback decision
	Necessity of rollback
	Atomic vs. non-atomic commits
	Using Bitcoin


	Scalability analysis
	Assumptions
	Number of transactions
	Number of ``unspent transactions''
	Degrees of separation

	Centralized payment networks
	``Full'' Bitcoin
	``Two-tier'' Bitcoin
	The Ripple, without using Bitcoin
	The Ripple, with using Bitcoin
	Conclusions

	Future work
	Remaining attack methods
	Transaction fees
	Interoperability
	Forked transaction paths


